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LADV: Deep Learning Assisted Authoring of
Dashboard Visualizations from Images and

Sketches
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Xiao Wen, Wei Chen

Abstract—Dashboard visualizations are widely used in data-intensive applications such as business intelligence, operation monitoring,
and urban planning. However, existing visualization authoring tools are inefficient in the rapid prototyping of dashboards because
visualization expertise and user intention need to be integrated. We propose a novel approach to rapid conceptualization that can
construct dashboard templates from exemplars to mitigate the burden of designing, implementing, and evaluating dashboard
visualizations. The kernel of our approach is a novel deep learning-based model that can identify and locate charts of various categories
and extract colors from an input image or sketch. We design and implement a web-based authoring tool for learning, composing, and
customizing dashboard visualizations in a cloud computing environment. Examples, user studies, and user feedback from real scenarios
in Alibaba Cloud verify the usability and efficiency of the proposed approach.
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1 INTRODUCTION

In the last two decades, ubiquitous dashboard visualizations that
can monitor all indicators at a glance have triggered phenomenal
impact. Recent research pointed out that dashboard visualization
provides far more than the sum of its individual parts [1].
However, the generation of dashboard visualizations involves large
volumes of input data, rich chart types, and varied usage scenarios.
Potential users confront difficulties from the strong dependence on
domain knowledge, task-driven visualization design, and holistic
implementation.

Most existing dashboard creation tools provide templates for
efficient chart initialization and flexible options for expressive
customization [2]. However, user choices when utilizing such tools
are polarized. On the one hand, visualization novices, who tend
to use templates in practice [1], [3], heavily rely on the diversity
of templates provided by visualization creation tools. However,
a dashboard contains multiple charts, and its design should be
determined according to data and analytical tasks, as well as
aesthetic considerations, resulting in a vast variety of dashboard
designs. Such a variety makes dashboards intractable to cover all
situations with a limited number of templates. Novices often fail
to present their data with properly designed displays due to their
inability to modify the applied templates on demand.

On the other hand, the creation of dashboards from scratch
requires iteratively refining the ideas into optimal solutions on
the basis of user intention and feedback from actual use. Such
designing-and-implementing loop is an upward spiral that gradually
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migrates from lo-fidelity sketching or prototyping to the complete
implementation of the final product. However, existing tools lack
support for the quick rendering of dashboard design ideas. The
initial conceptualization can only be performed on paper, in which
case the evaluation in actual use is skipped, or via a complete
implementation, which leads to excessive workloads.

As a result, these difficulties in either expertise or workload still
hinder broad audiences from creating and leveraging dashboards
despite the growing interest and need for visualization-driven
analysis. To bridge the gap between the application of templates
and the designing-and-implementing loop, dashboard creators are
in need of a tool for dashboard conceptualization — one that can
understand user intentions and enable rapid prototyping to try,
evaluate, and narrow down possible solutions.

A promising solution is to evaluate ideas through sketches
powered by computer-aided chart generation. SketchInsight [4]
allows users to sketch on a whiteboard and automatically fills
in the details. Recent studies also attempted to provide an
experience similar to drawing software, allowing designers to
create visualizations with their thinking and working processes [5],
[6]. However, such tools are unsuitable for novices because they
require users to have a clear understanding of what they want
to present. As a useful attempt, tools that recover charts from
images try to fill the expertise gap by leveraging exemplars [7],
[8]. However, existing methods cannot be applied to dashboards
due to the lack of multi-object recognition, consideration of overall
layout, and style matching.

In this work, we propose a novel approach called LADV,
for efficient prototyping from dashboard images or sketches.
This approach allows users to conceptualize their requirements
in a lightweight workflow with minimal required expertise and
implementation overhead. The kernel of our approach is a novel
deep learning-based model that can learn design intention from
existing dashboard exemplars, or convert sketches into well-
prepared style templates. Our model only learns vital elements from
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the input instead of precisely extracting all the design specifications
from an input image; it then reformulates the extracted information.
Reformulation considers the knowledge of the layout and color
learned from the collected dashboard instances and manually
specified design principles to achieve efficient dashboard designs.
The resulting dashboard prototypes can be used to illustrate the
design intention and be evaluated for further refinement.

LADV is beneficial for visualization novices and trained
designers. With LADV, novices can import dashboard designs by
selecting an inspiring example from collection galleries to generate
a dashboard template that can be applied and further customized
interactively. Moreover, LADV can quickly transform the concepts
of trained designers in sketches into ready-to-use dashboard demos,
thereby enabling rapid prototyping and evaluation. We also develop
an interactive interface with rich, detailed design options to ensure
that users can explore and customize the constructed dashboard
style and generate dashboards by feeding their data. User studies
verify the usability and efficiency of our approach.

In summary, the contributions of this work are twofold:
• This study develops a novel deep learning-based scheme that

supports the rapid prototyping of dashboard visualizations
from images or sketches;

• The efficiency of our schema is verified with a prototype
system that enables efficient creation, customization, and
communication of dashboard visualizations.

2 RELATED WORK

2.1 Visualization Creation Tools

Various approaches and tools have been proposed to bring addi-
tional accessibility to visualization creation processes from various
perspectives, including minimizing implementation overhead, re-
ducing required expertise, and speeding up infographic design [2].

A number of previous studies proposed visual toolkits and
grammar of graphics [9] that reduce the complexity of textual
programming and improve the efficiency of visualizing data. Such
tools help users quickly create visualizations by abstracting over
data models and graphical elements ranging from low-level graphic
libraries [10], [11], [12] and declarative specifications [13], [14],
[15] to high-level chart typologies [16], [17]. Nevertheless, textual
programming tools are still nontrivial for visualization novices,
who may fall into the tedious trial-and-error process when looking
for a reasonable design. By contrast, visualization creation tools
with interactive interfaces have been developed to reduce the
learning curve for casual users [18], [19], [20]. Most interactive
creation tools provide users with visual templates to create charts
with drag-and-drop actions and allow customization through
direct manipulation on the control panels. Popular commercial
software, such as Tableau [21] and Power BI [22] support building
dashboards from various chart templates provided. However, the
dashboards are not just plain combinations of charts. By contrast,
a reasonable dashboard design must consider the organization
of charts, overall layout, and consistent styling [23]. In practice,
template-based approaches cannot always meet design intentions
due to distinctive data modalities, various types of charts, and
specific analytical tasks.

An alternative way is to integrate computer-generated data-
driven charts within a designer’s workflow with drawing tools. Data-
Driven Guides [5] allows designers to easily bind data on drawn
graphics. Data Illustrator [6] is a vector drawing tool that employs
lazy data binding to create expressive visualizations. However, these

tools focus on sophisticated infographics designs, which are too
time-consuming to be used in the early conceptualization phase. By
contrast, sketch-based prototyping enables a high design efficiency.
SketchInsight [4] leverages pen and touch to explore and present
data on whiteboards, thereby providing efficient initiation for idea
evaluation and designing. Similar tools include SketchVis [24] and
SketchStory [25]. Although these tools are efficient, they cannot be
directly used for authoring dashboard visualizations because they
do not consider the overall layout and style consistency.

2.2 Chart Recognition from Images
In creating visualizations, users need to make certain decisions on
design styles, such as selecting proper chart types and specifying
color mapping. To this end, recent research has turned to “in the
wild” visualizations for example-based creation, namely, to extract
reusable templates from these visualizations, mostly in the form
of bitmaps. A variety of methods for classifying and recovering
charts from images have been developed.

Image classification for natural scenes has been widely studied
in the machine learning field. A number of methods have been
modified and applied to the classification of computer-generated
charts [7], [26]. Most chart classification approaches attempt to
achieve enhanced recognition accuracy on the basis of artificially
defined image features. Savva et al. proposed ReVision [7], which
determines the type of chart by using low-level image features,
together with the distribution of text regions as an improvement.

After the chart type is identified, additional chart style infor-
mation, such as textual components, legends, and visual mappings,
can be further extracted. The corresponding visual mappings can
be identified by localizing the chart’s different components, such
as axes and legends. Some tools further extract data from images
on the basis of the identified information of visual mappings. For
example, Revision [7] can extract style and data from bar and
pie charts. Poco et al. [27] used an end-to-end method to achieve
specialized text localization and extraction on charts. Jorge et
al. [8] contributed a method to semi-automatically extract color
encoding from visualization images after discrete or continuous
color legends are classified and identified. In the study, the legend
text was extracted by using optical character recognition methods.

However, this extraction process commonly makes assumptions
on the types or structures of charts. Hence, human intelligence
can be integrated to improve interpretation accuracy. For instance,
ChartSense [28] relies on the manual annotation of textual compo-
nents, whereas iVoLVER [29] employs gesture-based interactions to
identify regions in chart images. These semi-automatic approaches
are more adaptable to different charts but are less efficient than
others.

Deep learning techniques have been recently used for chart
interpretation. Convolutional neural network (CNN) can learn repre-
sentations of images without specifying the feature extractors [30]
and then measure the graphical perceptions [31]. Successful CNN
applications in chart interpretation include ChartSense [28] and
DeepChart [32]. In this work, we propose a new specialized
model for efficient chart interpretation from images containing
dashboards.

3 SCHEMA

3.1 Conventional Workflow
We held several meetings with the product managers (PMs),
designers, and software engineers of Alibaba Cloud [33] to
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Fig. 1. (a) Typical workflow of dashboard creation. Circles denote participants and their work, including designers, engineers, and decision makers
for design, implementation, and evaluation, respectively. The visualization and interface designers are merged because they work in a similar
way. Rectangles represent the ways by which different participants finish their work. Red colors (e.g., textual programming) require special skills
or knowledge, which incurs implementation overhead and may cause problems for untrained creators. Green colors (e.g., manipulation through
interaction) can be easily utilized. Solid lines and arrows indicate the communication between different participants. Everyone must complete their
corresponding work before passing the output to the next person in charge to iteratively refine the dashboard design. Such a workflow results in large
communication overhead. (b) By contrast, LADV requires minimal skills and knowledge and entails a low workload. Each participant can leverage
LADV to complete a lightweight workflow on its own, with minimal required expertise and implementation overhead. This approach can also speedup
the prototyping process in the early conceptualization phase.

understand the design and creation of dashboards. Their primary
product is a cloud-based dashboard creation tool, DataV (Figure 4),
which has generated more than 42,000 dashboards. We discussed
elements in designing dashboards, possible problems, and important
concerns related to efficiency and effectiveness. Moreover, we also
learned the differences between novices and trained dashboard
creators. We summarized the conventional workflow of dashboard
creation and discussed possible solutions to improve the workflow.

The workflow of novices who prefer template-based tools starts
from choosing a template to deciding the selection and layout of
charts. However, a PM mentioned that “most users simply apply
a template we provide to display their data without making any
design modification (on the chart types and layout).” A large
percentage of DataV dashboard instances share a few layouts and
colors, which are the provided templates and color palettes. After
a template is applied, the creators only make little modifications,
such as fine-tuning the positions of charts or trimming the styles
(border, texture, etc.). These creators are unable to modify the
layouts and color encodings on demand due to their inability to
make data-driven or task-based specifications. Accordingly, novices
cannot make good use of the rich customization options in DataV
to design their own dashboards. The only feasible improvement is
to provide novices a large number of templates and color palettes
to choose from.

The workflow of trained creators can be explained by three
steps [34]. First, the data analysts define the project characteriza-
tion and domain problems and abstract domain-specific tasks to
conceive the visual stories from the data. These analysts would
probably suggest chart types and graphical elements. Second, the
interface designers contribute graphical designs and dashboard
layout. Third, the visualization engineers implement all designs.
The actual workflow may rollback to form iterative refinement loops
(Figure 1(a)). The data analyst and designers tend to conceptualize
and make visual design on paper or in the painting software they
are used to. These participants often have to wait for engineers
to implement the design and then obtain feedback on actual
use because the actual generated dashboard often behaves quite
differently from the drawn design. For example, a skewed data
distribution may lead to unexpected visual effects. However, a
complete implementation is seldom necessary. Thus, low-fidelity
prototypes for feedback are built in the early stages of the design

process, while leaving detailed decisions in future iterations [35],
[36]. Inspired by SketchInsight [4] and NapkinVis [37], a tool that
enables low- fidelity but fast prototyping from design sketches
may help analysts and designers quickly generate and evaluate
dashboards without relying on collaboration with engineers. Thus,
designers’ efficiency can be greatly improved by eliminating
implementation and communication overhead.

3.2 LADV Workflow
The present study aims to help a broad audience conceptualize
dashboard solutions. Our target is not to generate the final product
but to come up with a lightweight method for fast prototyping.
Prototypes can help users consolidate their ideas and provide a
medium for users to express, exchange, and evaluate ideas with
others. In designing LADV, we are concerned about the mechanism
by which to bring in and inspire users’ design intention. However,
continued implementation must also be enabled.

We consider two aspects. On the one hand, novices should
create dashboards in an expressive way rather than alternating
between a few templates. On the other hand, trained creators
should reduce implementation overhead to improve efficiency while
exploiting their skills.

The core idea of LADV is to automatically learn designs
from exemplars. Learning from exemplars enables the drawing
of inspiration from existing dashboard galleries and modifying
designs to conceptualize ideas. This method can also be modified
such that it is applicable to sketches. In this way, LADV is a mixed-
initiative system that provides designers with the ability to quickly
implement their designs. Providing a lightweight workflow that
can be performed with high efficiency is advantageous at the early
conceptualization stages (Figure 1(b)). We present two scenarios
illustrating the mechanism by which LADV works for different
audiences.

Novices’ mode. One day, Wendy obtained monthly sales data,
containing several different economic indicators in three cities
and wanted to make a dashboard to report to her manager the
next day. She decided to try some new designs because she was
unable to find a desirable template in her dashboard creation
tool. Normally, she would ask the IT department to help generate
the dashboard, but it was already too late to do so. Thus, she
began to try LADV for fast dashboard creation. Subsequently, she
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(a) (b)
Fig. 2. (a) After the selected exemplar is uploaded, (b) Wendy rapidly created a prototype for further refinement by simple interactions.

(a) (b)
Fig. 3. Creating a dashboard from a sketched image using LADV. (a) The bitmap image on the left is a hand-drawn sketch that presents the design
intention. LADV leverages a novel deep learning-based scheme to learn dashboard styles (e.g., charts, chart types, and layout) from the sketch. (b)
The dashboard visualization on the right can be automatically constructed by feeding a sample dataset into the learned style.

searched for dashboard images on various networks, such as Google
and Pinterest, and found one that fitted her needs (Figure 2(a)).
Such image contained a radar graph that could compare the three
cities using different indicators. She only needed to upload the
image to LADV. Afterward, she was able to generate a dashboard
(Figure 2(b)) that had been converted into a template. Thereafter,
she imported the template into the dashboard creation tool and
applied further customization by interactively linking data and
modifying the styles.

Experts’ mode. Peter is a dashboard designer and is currently
assigned to design a dashboard for a vehicle company. As the
vehicle company sells nationwide, he thought that a map could
help people effectively understand the national sales data. He also
planned to use a line graph to show sales trends and other charts
to present different data dimensions. However, he was hesitant
on where to place this map and the other charts in the dashboard.
Hence, he drew five sketches with different layouts in the painting
software. Thereafter, he uploaded the five sketches to LADV to
generate dashboards. Finally, Peter selected the one wherein the
map chart was in the center of the dashboard (Figure 3).

3.3 Design Considerations

We identified several design considerations by combining our goal
with visual design guidelines and dashboard design practices to
guide the design of the model and interface. On the basis of these
considerations, we built LADV as a tool to recognize and quickly
synthesize dashboard templates from exemplars.

C1. Leverage successful designs. The dashboard design is
relative complex; thus, taking inspiration from existing work is
beneficial [38]. Novices should choose a visible instance as an
initialization because doing so is more feasible than providing
flexible design approaches. Therefore, users are allowed to initialize
their designs by providing images of existing dashboard samples.

C2. Fast prototyping in one step. Users of the dashboard
creation tool generally lack the skill, interest, or time to perform
complex operations. Hence, we shape LADV such that is as easy
as applying a template. Thus, creators can quickly obtain a demo
product and then evaluate their design decisions.

C3. Focus on the layout and color palettes rather than on
the detailed specifications. Our goal is to allow fast prototyping
for the early conceptualize stages. Thus, we do not propose LADV
as a tool that can solve all dashboard design details at once. Instead,
we focus on the overall dashboard design, including chart type
selection, arrangement, and color palettes. Both novices and skilled
users regard these concerns as important.

C4. Generate dashboards with aligned layouts and unified
color palettes. In automated template generation, the layouts and
colors of the resulting dashboards may be defective due to errors
or noises in image processing. Novices often produce inefficient
designs with such templates. The automatic alignment and unified
color palettes can also greatly reduce the cost of subsequent
modifications of trained users. We constrain the layout and color
with certain rules, which can be manually defined or learned from
existing dashboard instances (C1).

C5. Support subsequent customization. Apart from auto-



5

matic generation, LADV should allow the result to be imported into
an interactive tool for further specification and customization of the
dashboard. In our prototype system, the template is automatically
loaded by the layout and chart editor of DataV, which provides rich
customization options for users to modify the dashboard on their
demands. This situation allows users to polish their designs, while
continuing to generate the final dashboard product.

4 LADV

Interac�ve Customiza�onExemplars

Images/Sketches

LADV Engine
Template Reformula�on

DataV
Dashboard Crea�on

OSS
Cloud Storage

User
Datsets

Download/
Draw

Upload

Fig. 4. System architecture of LADV. LADV provides users with a
web-based interface for uploading dashboard images or sketches as
exemplars, which are reformulated to dashboard templates. In addition,
LADV is combined with DataV to generate dashboards and provide rich
customization in a cloud computing environment. Moreover, datasets
can be stored on the cloud and be easily applied to the generated
dashboards.

We implemented LADV as a web application built upon a cloud
computing environment. Figure 4 illustrates the major components
of LADV and their relationships. The LADV interface consists of
a web page for uploading exemplars (Figure 2(a)) and the DataV
editor for further customization (Figure 2(b)).

The process of LADV starts by feeding an exemplar into the
learning engine (C1). Users can select the exemplar from the given
dashboard collection, upload a local image, or draw on a sketch
canvas (Figure 5). After the exemplar is uploaded, LADV invokes
the backend engine that can learn the charts’ designs, layout,
and color style (C3). The layout and colors are then optimized
on the basis of predefined rules or knowledge extracted from
existing instances (C4). Finally, a dashboard template is generated
and imported into DataV (C5). With the immediately generated
prototype (C2), a user-driven interactive modification can then be
performed. Users can also upload their datasets to the Alibaba
Cloud Object Storage Service (OSS). The stored datasets can be
easily applied to the generated dashboards.

DataV is a mature drag-and-drop dashboard creation produc-
tion built upon a web-based architecture that allows users to edit
and save their dashboards in an online editor without professional
knowledge in programming. The DataV editor (Figure 2(b))
consists of four parts: the component panel (top), layer panel
(left), canvas (center), and configuration panel (right). The smallest
manipulable unit in DataV is the chart, which is called a component.
Users can drag and drop to create new components from the
component panel containing hundreds of predefined chart templates.
Components are listed in the layer panel after creation, and a
thumbnail of the overall layout is displayed at the bottom-right
corner of the canvas. Users can select, move, and resize components

on the canvas by using a mouse. After selection, rich options on
the configuration panel are provided to specify the data binding,
color encoding, and other styles of the chart.

Fig. 5. The sketch canvas pro-
vided by LADV for fast convenient
sketching.

Fig. 6. Annotations on a chart. The
position, size, and chart type are
annotated.

5 DATA COLLECTION

We first collected and annotated an image corpus of 6,348
dashboard instances, including computer-generated ones and hand
painted sketches to build LADV. We separately trained two deep
learning models for computer-generated images and sketches on
the basis of the annotated data. In this section, we first present the
mechanism by which we collected and annotated the training data.
In the next section, we propose the manner by which to train and
use the models.

The computer-generated dashboard images came from the real
cases of the DataV platform (Figure 4) and dashboard images
crawled from the Internet (2,348 and 2,000, respectively). The
sketched dashboard images (2,000) were collected from hand
painted drafts by several designers working on dashboard products.
We manually selected proper images from the collection for training.
All images were normalized to 1920×1080 pixels.

5.1 Annotation

The computer-generated dashboards from the DataV platform were
automatically annotated on the basis of the information extracted
from their textual specifications. Other dashboards, including
images downloaded from the Internet and sketches, were manually
annotated. In contrast to the training data for the general image
classification model, which only needs a label for each image,
each dashboard image contain multiple charts to be individually
annotated for an object detection task. The annotation process on
DataV dashboards, downloaded images, and sketches are the same.
We eliminated charts whose widths or heights were less than 30
pixels. Thereafter, we annotated the chart type, position, and size of
each chart. Figure 6 shows that each dashboard consists of several
charts, the annotations of which are five-tuples (x,y,w,h, t), where
(x,y) is the position of the topleft corner of the chart; w and h are
the width and height, respectively; and t is the chart type (e.g., bar
or pie chart).

5.2 Computer-Generated Dashboard Images

We classified charts in computer-generated dashboard images into
36 categories, such as basic bar chart, basic line chart, and basic
pie chart. The image set was divided into 75% training, 15%
validation, and 15% testing. The annotations of all training data for
computer-generated dashboard images are denoted as Dg.
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5.3 Sketched Dashboard Images

We collected 2,000 sketched dashboard images drawn by the
designers or artists by using the painting software or on paper.
Sketched dashboards differ from computer-generated ones for the
following reasons: the lines are quite irregular, the layout is not
well-aligned, and the charts are often not filled with colors. Figure 7
shows some examples. Among the common features of hand-drawn
sketches are their roughness and insufficient details. Therefore, we
classified charts in the sketched dashboards into 10 categories, each
corresponding to one or a group of categories in the computer-
generated dataset. For example, the “line chart” in the sketched
dataset corresponds to the “basic line chart” and the “line chart with
multiple lines” in the computer-generated dataset. Sketched images
are divided into 75% training, 15% validation, and 15% testing.
The annotations of all training data for the sketched dashboard
images are denoted as Ds.

Fig. 7. Examples of sketched dashboard images. The chart styles can
be varied. (a–c) are composed of only lines and are not filled, whereas
(d–f) are filled with different colors.

6 APPROACH

In this section, we present the LADV engine, which enables fast
prototyping from dashboard images and sketches. We develop a
deep learning-based model to recover a dashboard template, which
consists of the chart types, layout, and color palette, from the
input image. Figure 8 illustrates that LADV takes the following
steps to generate a dashboard. After a dashboard exemplar is
incorporated into the model, each region that may contain the chart
is identified and then verified (Figure 8(a)). The model recommends
a color palette on the basis of the colors extracted from the image
(Figure 8(b)). The layout of the identified charts is optimized
on the basis of a grid-based scheme (Figure 8(c)). Finally, LADV
synthesizes a dashboard template from the chart types, color palette,
and layout. The generated template is imported into DataV for
further customization (Figure 8(d)).

LADV is based on the following approaches:
Chart recognition. We propose a new model based on deep

learning technique to recognize charts from dashboard images.
This model adapts a Faster R-CNN network [39] that can achieve
promising results in object detection. The R-CNN model first
checks a certain number of candidate regions that may contain
a chart. If a chart exists, then its bounding box and category are
predicted. We improve the original Faster R-CNN network to
consider the characteristics of different chart types learned from
existing dashboards. In this way, LADV can achieve a greatly
improved accuracy in recognizing charts from dashboards.

Color palette recommendation. After the charts are identified,
LADV begins to specify their colors. The colors are chosen from a
color palette extracted from the input image. Instead of individually
extracting colors from each chart, LADV creates a global palette
for the entire dashboard to ensure visual consistency (C3). LADV
uses predefined color palettes for sketches because they always
lack color information

Layout optimization. The location and size of the charts
identified from images are full of random noises, which severely
affect the resulting dashboard. We optimize the layout on the basis
of a grid design to ensure an effective design (C4).

Finally, a dashboard is generated from the recognized charts,
extracted information, and a set of sample data by using DataV
specifications. Users can interactively customize the design, import
their own data, and evaluate the dashboard in actual use.

6.1 Chart Recognition
6.1.1 Preparation
The input images need preprocessing for optimal results. Borders
around the images (often occurring in the case of sketches) can
interfere with the recognition of charts and are thus removed
by means of a flood-fill algorithm [40]. Wide white margins are
also removed to eliminate unusual aspect ratios. Light strokes in
sketched images often lead to a decrease in recognition accuracy;
thus, we increase the contrast of sketched images.

6.1.2 Candidate Detection
We train two Faster R-CNN models for the computer-generated
dashboard dataset Dg and the sketched dashboard dataset Ds.
Moreover, we fine-tune a pretrained network on the basis of
VGG16 [28] before the formal training to achieve optimal results
The trained Faster R-CNN models can perform object detection
tasks on dashboard images. The detection results include a series
of chart candidates, their corresponding types, and a type score for
each candidate that describes the probability of the chart to match
the type.

6.1.3 Machine Learning-Based Validation
The conventional Faster R-CNN model cannot achieve desirable
accuracy in recognizing dashboard images because of two reasons.
First, the color blocks in the background or part of a chart
may be misidentified as a separate chart. the characteristics of
different chart types are neglected by the model when composing
dashboards.

We train a validation model to filter the chart candidates. This
task is carried out to deal with such issues and precisely handle
various types of charts. The validation model considers not only the
type score given by the Faster R-CNN model, but also the learned
score based on the chart characteristics learned from the annotated
training data.

Learned characteristics of charts. We store the location
information of each chart type in the computer-generated dashboard
dataset by computing a 3D kernel density estimator (KDE),
which considers positions and sizes of the charts. The KDE
for chart type T can be calculated in the following steps. Let
{d1,d2, · · · ,dn} be the descriptors of all charts of type T , defined
as

{
(x+w/2,y+h/2,

√
w×h)

∣∣∀c = (x,y,w,h, t = T ) ∈ Dg}, rep-
resenting the center positions and sizes of charts that are of the
same type. The KDE f̂T is defined as follows:

f̂T (x,y,a) =
1

nh

n

∑
i=1

ker
(‖(x,y,a)−di‖

h

)
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Fig. 8. Pipeline of our approach. (a) Chart candidates are recognized from the dashboard image and then validated through a deep learning-based
model. (b) Colors are extracted from the charts based on their statistical information. (c) After optimizing the layout by grid-based scheme, the
dashboard is generated and interactively customized (d).
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learned from the annotated training data. We train the model by fitting a logistic regression of candidates and the ground truth.

where ker is the Gaussian kernel, ‖·‖ is the Euclidean distance, and
h is the bandwidth. In our model, h is determined by a grid search
algorithm for KDE in [41].

We do not use KDE for the sketched dashboard dataset because
the chart location distribution in the sketched dashboards is irregular.
We assume that people tend to use different layouts when drawing
sketches.

Candidate validation model. Next, we train the model for
validating candidates by fitting a logistic regression of candidates
produced by the Faster R-CNN model and the ground truth from
annotated charts.

We denote each chart candidate as ((x,y,w,h, t),(ts, ls), l),
where (x,y,w,h, t) is the same five-tuple as the chart annotation,
ts is the derived type score from Faster R-CNN, ls is the learned
score computed from the learned characteristics and l is labeled
using ground truth, computed as follows: For each candidate, we
calculate its learned score by ls = f̂T (x+w/2,y+ h/2,

√
w×h),

where f̂T is the 3d-KDE of type T . We also test if the candidate can
match an annotated chart, denoted as l = 1 if there is an annotated
chart that has the same chart type, and the coincident area of
the candidate and the annotated chart is higher than 50% of the
annotated chart area; otherwise, l = 0.

We train a logistic regression model for each chart type
to capture the location and size characteristics (Figure 9). We
collect all chart candidates in the training data, filter those whose
ts < 0.1, and group them by chart type. Thus, a set of regions
{r | r = (D,(x,y,w,h, t = T ),(ts≥ 0.1, ls), l)} is formed for each
chart type T, and then fitted within a logistic regression model,

denoted as

hT (r) = P(l = 1 | ts, ls) = exp(β0 +β1ts+β2ls)
1+ exp(β0 +β1ts+β2ls)

where β0, β1, and β2 are the parameters determined using maximum
likelihood estimation.

6.1.4 Chart Inference
We can choose credible candidates and deal with conflicts between
chart candidates on the basis of the trained models. When a
dashboard image becomes available, we obtain all its chart
candidates from the Faster R-CNN model and filter the regions
whose type scores type score are less than 0.1. Given the five-
tuple (x,y,w,h, t) and type score ts of each candidate, we calculate
ls = f̂t(x+w/2,y+h/2,

√
w×h) and l = ht(ts, ls). We select the

reliable chart regions through a greedy algorithm (Algorithm 1) on
the basis of the calculated ls for all regions. Nevertheless, a map can
serve as the background that overlaps with other charts. The mean
average precision (mAP) [42] for recognizing computer-generated
images on our test dataset increases from 70.55% to 77.92%.
subsection 7.1 provides additional details of the model performance.
Our approach is complemented by the prior probability distribution
of chart characteristics, which can be integrated with any other
machine learning-based model to improve accuracy.

6.2 Color Palette Recommendation
After the charts are identified, the user can choose a color palette to
apply. LADV can extract color information from dashboard images
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Algorithm 1 Select charts from the candidates.
Input: set of candidate regions R
Output: set of selected regions Rout put
Rout put =∅
while |R|> 0 do

r0 = the candidate with the largest l value in R
for all r ∈ R,r 6= r0 do

if r and r0 have overlapping parts then
k = areaoverlap/min(arear,arear0)
if k > 0.3 then

R = R\{r}
end if

end if
end for
Rout put = Rout put ∪{r0}
R = R−{r0}

end while

to generate a color palette similar to that in the original dashboard.
The color extraction is based on the number of pixels occupied
by different colors. For sketches that are not colored, we offer
predefined palettes that the designers have specified for the user to
choose from.

Given that charts in dashboards often contain mixed transparent
colors (Figure 10(b)), borders (Figure 10(f)), specified background
colors (Figure 10(e)), or other decorations, we do not extract all
colors inside each chart. Instead, we focus on the overall style of
the whole dashboard for consistency. We extract the “main color”
of each dashboard and then generate a color palette around it. Our
approach comprises three steps: (1) extracting dominant colors, (2)
deciding on the background and text colors, and (3) generating the
palette colors.

6.2.1 Extracting Dominant Colors

We first extract the dominant colors. A legend-based color ex-
traction method is not used because the legends in dashboard
images typically have low resolutions [8]. We extract the colors
of the entire display associated with their proportions. Moreover,
we extract 12 dominant colors for each input image by using the
median cut algorithm. Each identified color Ci is represented as
a four-tuple: three CIELAB channels, and its proportion, namely,
Ci = (L,a,b, p).

6.2.2 Deciding on the Background and Text Colors

The background and text colors are indispensable components of a
dashboard. LADV selects the color with the largest proportion as
the background color. The text color is generated from the identified
background color by using a greedy search in the CIELAB color
space. Furthermore, the text color is defined as a color with a
high contrast to the background color. We use the definition of the
contrast ratio of Web Content Accessibility Guidelines (WCAG
2.0)1. The contrast ratio is defined as (L1 + 0.05)/(L2 + 0.05),
where L1 is the relative luminance of the lighter color and L2 is the
relative luminance of the darker color. LADV identifies a color in
the entire color space whose contrast ratio to the background color
is larger than 7:1 by using a greedy algorithm [43]. WCAG indicates
that such a contrast ratio guarantees an enhanced readability.

1. https://www.w3.org/TR/2008/REC-WCAG20-20081211/#contrast-
ratiodef

6.2.3 Generating Palette Colors
LADV generates a color palette with identified dominant colors.
LADV removes colors from the dominant colors that are similar
to the background or text color. The similarity is measured by
the Euclidean distances within the CIELAB color space and the
threshold is set to 50. The dominant colors are then clustered with
the DBSCAN algorithm [44]. In each cluster, the color that has
a large proportion in the cluster is selected. The color palette is
generated using clustered colors and then set as the theme color
style for the subsequently generated charts.

6.3 Layout Optimization
Figure 8(a) illustrates that the raw output of the recovering model
often exhibits a deflective layout. Therefore, we need to adjust the
locations of the charts (Figure 8(c)) to ensure that they conform
to the original arrangement or to correct the irregular layout of
the input image, especially for sketched dashboards that are often
inaccurately drawn.

In adjusting the layout, we follow the design regulations, such
as the visual balance [45], to achieve aesthetic pleasure. We
formulate our design principles on the basis of the grid design
guidelines, which are regarded as a systematic approach based on
the relationships of alignment [46]. Four steps are sequentially
performed.
• Tessellate using rectangles. Each chart is a rectangle. The

overlapped charts are shrunk until they are no longer overlap-
ping.

• Align to grids. Edges that are close in the horizontal or vertical
direction are aligned on the same line. However, the moving
distance is no more than 50 pixels.

• Group similar charts. The charts close to one another and have
the same chart type and similar sizes are grouped together.
Charts in the same group equally divide the space occupied
by the entire group.

• Set the same margins. All margins between charts are set to
be the same. In practice, we set the margin width to 5 pixels.

6.4 Implementation
We train the Faster R-CNN network by using Pytorch deep learning
library [47] and the logistic regression using scikit-learn [41].
Scripts for color extraction and layout optimization are written
in Python. The dashboards are generated through the DataV API,
which is written in JavaScript.

7 EXPERIMENTS

7.1 Model Performance
Table 1 shows the mAP, a metric that measures precision and recall,
of our models. The Intersection over Union (IoU) threshold is set
to 0.5, the learning rate is set to 0.001, and the batch size is set to
4.

Instead of adding the machine learning-based validation for all
charts, we compare the validation and Faster R-CNN results of
each chart. Thereafter, we only apply the validation for 13 charts,
whose scores have been increased. The validation can improve
the recognition mAP for computer-generated images from 70.55%
to 77.92% across 36 categories by adding the logistic regression
models. Table 2) illustrates some improvements. However, the
original Faster R-CNN performs well enough on the sketch cases
(85% mAP). This outcome is attributed to the relatively limited
number of categories (10 different chart types) used in this model.

https://www.w3.org/TR/2008/REC-WCAG20-20081211/#contrast-ratiodef
https://www.w3.org/TR/2008/REC-WCAG20-20081211/#contrast-ratiodef
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TABLE 1
mAP values of different models.

Task Faster R-CNN With validation

Computer-generated images 70.55% 77.92%
Sketches 85.08% –

TABLE 2
Top five chart categories with the highest AP improvement.

Chart category AP improved Faster R-CNN With validation

Pseudo 3d world map 50% 50% 100%
Textured bar chart 37.83% 54.55% 92.38%
Line chart 29.29% 67.14% 96.43%
Bar chart 29.10% 67.50% 96.60%
Stacked bar chart 25.79% 66.87% 92.66%

7.2 User Study: LADV Results
We conducted a user study to evaluate the quality of the generated
dashboards. This task was performed to investigate the usability and
efficiency of LADV. We used only computer-generated images as
input to comprehensively evaluate the model results from different
perspectives, including chart types, layout, and color.

7.2.1 Study Design
We collected dashboard images grouped by four sources to test
the mechanism by which LADV performs on different dashboard
styles: (1) Google image search for the term “dashboard”, (2)
Google image search for the term “Power BI”, (3) Google image
search for the term “Tableau”, and (4) Tableau Public’s Gallery.
We invited four data analysts to choose two of their preferred
dashboard designs in each of the four groups. Accordingly, we
collected 32 different dashboard designs. The images were loaded
into LADV to generate dashboard prototypes. Figure 10 presents
some examples. In each column, the upper image is the original
one, and the lower image shows the generated dashboard.

We recruited 16 participants (8 females and 8 males, aged
23–35 years old, mean=26.75, STD=3.1). All participants were
confirmed to have no form of known color blindness. The
participants were asked to complete a questionnaire, in which
each generated dashboard should be rated from different aspects,
including aesthetics, willingness to continue to build upon the
generated dashboard, types, layout, and color, on a five-point
Likert scale ranging from -2 (strongly unsatisfied) to 2 (strongly
satisfied). The participants were also encouraged to write down
their comments, including the perceived strengths and weaknesses,
on the generated dashboards.

7.2.2 Results
Figure 11(a–e) shows the results of the questionnaires (plotted
by group). Overall, the participants agreed that the generated
dashboard was aesthetically acceptable, except for the group
of Tableau Public’s Gallery. Some of the generated dashboards
received a low aesthetic score. However, the willingness to continue
to build upon the generated dashboards remained positive (“Even
if there are some faults . . . it can still save time creating a
dashboard”).

LADV received good scores in the type of charts, layout,
and color for processing images from the other three groups.
However, the score of types for Power BI were relatively low
because it contained some chart types, including treemaps and
some composite charts, that LADV could not recognize (and DataV
had not implemented). The treemaps were recognized as heatmaps
(Figure 13(d)) or bar charts (Figure 10(d)). In some other cases,
LADV also produced undesirable results. For example, Figure 10(f)

(also the outlier of the color score in Figure 11(a)) uses a design
that emphasizes the comparison between two groups of charts by
using different colors. Our color extraction strategy cannot capture
such features, and the resulting dashboard is encoded with the
wrong colors.

7.2.3 Discussion
The low aesthetical score of Tableau Public’s Gallery is due to
the images in this group being mostly infographics consisting of
special glyphs and customized layouts that are not grids (e.g.,
Figure 10(h)). Such dashboard styles are of small number in the
training data. Another reason for the low scores of LADV on the
infographics is its weakness in terms of recovering large paragraphs
of text. Our approach cannot accurately capture the area occupied
by the text, along with the font and font size.

Most participants agreed that LADV could help them in their
dashboard design despite the above-mentioned drawbacks Some
comments are quite positive: “I think I do not need to make any
modification to some dashboards to implement the dashboard
design into my project.” However, some participants suggested
improving the recognition of text and chart details. One participant
said, “There are some font problems when I use LADV. The font
detail will cause some changes in the dashboard perception.”. By
contrast, another participant said, “Some chart details are missing.
I hope that this could be improved in the future.” We did not
anticipate some participants indicating that the generated dashboard
has better color than the original one. For example, one participant
said (pointing at Figure 10(e)), “The recognition result of the chart
types is good. Sometimes, the automated color matching optimized
the original dashboard. This is very surprising.”

The results show that LADV can help novices create dashboards.
One participant said, “I don’t have much experience in dashboard
design, but our company needs to update dashboard design
frequently. This tool is definitely the one I was looking for. I
can test different dashboard examples in a few minutes and choose
the better one.”

7.3 User Study: LADV Workflow
We also conducted a user study to investigate the efficiency of the
LADV workflow.

7.3.1 Study Design
We provided datasets and corresponding descriptions for presen-
tation to motivate the participants to create dashboards with clear
goals. However, the participants were not expected to import data
on every attempt.

Creation tools. We compared LADV with a “basic” edition
of DataV, which retains the interactive creation and customization
of dashboards but removes recognition from images. The existing
software was not chosen to ensure that the two tools have the same
expressivity and usability in creating dashboards. Therefore, we
implemented a tool that has similar UI and interactions to LADV
to serve as a baseline for the controlled experiments.

Datasets. We prepared two multi-dimensional tabular datasets.
The first one contained student information data of a university in
Portugal, including student grades, family, social relationships, and
other attributes. The dataset contains 649 instances and 33 attributes.
The other dataset was from the US population census in 1994. This
dataset contains 48,842 instances and 14 attributes; some examples
of key attributes included work class, highest education, and capital
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Fig. 10. Examples of dashboards learned and generated from images. The lower images are generated from the upper images in (a)–(h). The images
come from Google image search results for the terms “Tableau”, “Power BI”, and “Dashboard”, as well as Tableau Public’s Gallery. (a), (c), (e), and (g)
have the highest aesthetic scores in each group, and (b), (d), (f), and (h) have the lowest ones.

gain. However, the participants often spent a long time exploring
the datasets during piloting. As we focused on the design decisions
rather than data exploration, we prepared and provided collected
patterns. The participants were asked to design their dashboards
on the basis of the given information. For example, “There is a
relationship between the number of school absences (numeric, from
0 to 93) and number of class failures (numeric, n if 1≤ n≤ 3, else
4)”.

Each participant was assigned to two experimental conditions
with different tools and different datasets to avoid the learning
effect. The order of tools and datasets was counterbalanced across
participants according to a Latin square design.

Participants and apparatus. We recruited 16 participants (88
females and 8 males, aged 24–35 years old, mean=27.3, STD=2.8).
Half of the participants had used visualization tools2, including
DataV, Excel, Tableau, and Python/matplotlib. All experiments
were conducted in a lab setting, with tools run in Chrome on a
MacBook Pro with 13-inch Retina monitor, resolution of 2560×
1600 pixels, and 60 Hz refresh rate. Each experimental condition

2. 16 participants include 8 engineers (4 had used visualization tools, 4 has
not), 4 designers (had not used visualization tools), and 4 college students (had
used visualization tools).

lasted for about an hour. All participants were compensated with
$8 per hour.

Procedure. The experiment for each condition began with a
10 min tutorial of the creation tool. The participants were shown
an introduction to the tool’s functionality, guide of interactions,
and a sample of actual use (using a dataset different from the two
utilized in the experiment). Thereafter, the participants were taught
some dashboard examples with 20 images that could be browsed or
imported to LADV during the entire experiment. Each participant
could choose to sketch on paper, a whiteboard, or a tablet with a
stylus. We also introduced the think-aloud method and asked the
participants to follow. After the dataset and collected data patterns
were introduced, the participants were asked to create dashboards.
Specifically, the participants were asked, “Try to display the given
information through different dashboard designs. Adjust the layout
and style until you think the dashboard can properly demonstrate
your design intention when communicating with others.” The
participants were also asked to mark the dashboards on which they
felt that the design was completed. Subsequently, the participants
were given 10 min each to create dashboards. However, the
experiment could be terminated as long as the participants were
satisfied with the accomplished dashboard(s).
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Fig. 11. (a–e) Distribution of participants’ ratings on the generated dashboards from different collections of images. Participants rated aesthetics,
willingness to continue to build upon the generated dashboard, types, layout, and color on a 5-point Likert scale (-2 strongly unsatisfied, -1 unsatisfied,
0 neutral, 1 satisfied, and 2 strongly satisfied). Ratings are grouped by different sources: Google image search for the term (a) “dashboard”, (b)
“Power BI”, and (c) “Tableau”, as well as (d) Tableau Public’s Gallery, and (e) summary of all collected examples. (f) Results of the participants’ ratings
for LADV’s ability to deal with different tasks on a five-point Likert scale.

Records and questionnaire. An experimenter observed the
experimental process and took records. All interactions of the
participants and resulting designs were automatically recorded,
together with the audio to capture the participants’ verbalizations.
After each participant finished two experimental conditions, he/she
was asked to fill out a questionnaire consisting of several comments
and five-point Likert scale ratings.

7.3.2 Analysis and Results

We present some interesting results focusing on participants’
workflow, efficiency, and experience using different tools.

LADV improves creativity. We analyzed the number of
dashboard designs created to assess the mechanism by which
LADV promotes creativity. Most experiments were terminated
before the time limit was reached; thus, this number can reflect the
participants’ creative impulse. We found a significant difference
between tools (χ2(1,N = 16) = 6.0, p = 0.014 < 0.05). The partic-
ipants create an average of 1.69 dashboards with LADV, whereas
they created 1.19 dashboards with DataV (a 42% increase). This
result indicates that LADV is beneficial for users in conceiving
and attempting possible designs. User feedback also confirms this
notion; for example, “Compared with creating (charts) by drag
and drop (in DataV), I continue to generate new ideas while
hand-drawing (and then pass the sketches into LADV).”

We then analyzed the difference between data analyzing novices
and experienced participants. A significant difference in the number
of dashboards created when using LADV was found between the
two groups of participants (χ2(1,N = 16) = 4.0, p = 0.046 < 0.05,
novices: mean=1.25, others: mean=1.75). No significance was
found when DataV is used (χ2(1,N = 16) = 2.0, p = 0.157 < 0.05,
novices: mean=1.38, others: mean=1.63). The results show that
LADV can efficiently exploit users’ understanding of the data.

Tools affect efficiency. We analyzed the effects of the tool on
the time needed to finish creating a dashboard. The numbers of

dashboards created by participants varied; thus, we only considered
the first accomplished dashboard of each participant. On average,
205.9 s was needed to create a dashboard using LADV, and 356.9
s was needed for DataV. The time required for LADV was short,
and a significant effect was observed (χ2(1,N = 16) = 8.067, p =
0.005 < 0.01). We also observed a significant effect of the tool on
the number of modifications made after creating charts and before
being satisfied (χ2(1,N = 16) = 12.25, p = 0.00 < 0.01, LADV:
mean=1.06, DataV: mean=1.94). These results suggest that LADV
can efficiently understand users’ design intention and improve the
efficiency of authoring dashboards.

Meanwhile, the dashboards created using DataV contained an
average of 9.4 charts of 6.3 types, which are greater than the 8.1
charts of 5.4 types created with LADV. The possible reasons are
as follows. LADV lacks hints for available chart type choices, and
users often build up dashboards with the charts they are familiar
with rather than try different types of charts.

Different workflows. We analyzed the effects of tools on
the users’ workflow. Only three of the participants (19% of the
total 16 participants), who are all designers, attempted to generate
dashboards from computer-generated images. One participant said,

“When I import a computer-generated dashboard image, I want the
detailed style, but the resulting dashboard is different from what I
expected.” This situation is attributed to the inability of LADV to
identify detailed styles. Another participant noted that the computer-
generated images lacked the advantages offered by sketching, which
is more flexible. One designer stated that he is willing to generate
dashboards by drawing detailed design drafts, which are more like
computer-generated images rather than sketches. However, this
task was not performed because it would have taken a substantial
amount of time to complete during the experiment.

Participant feedback: usability and improvements. The
participants’ comments indicate that we achieved most of our
goals, although some improvements can still be made. One
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participant said, “The learning curve of LADV is much lower and
provides convenience. With LADV, the user can quickly setup the
overall layout for further customization.” Another participant said,

“Automatic alignment is also very helpful.” Approximately 89%
of the participants strongly agreed or agreed that learning styles
from images is helpful, and the number for layout optimization
is 78%. Figure 11(f) shows the participants’ rating for LADV’s
ability to deal with different tasks. LADV is suitable for dashboard
design, but it lacks support for data exploration and building specific
dashboards. This finding is consistent with the comment stating that

“LADV is suitable for deciding the design and layout. DataV has
low trial-and-error costs when designing the details.” Another
similar comment indicated, “I prefer LADV when conceiving
different design ideas. DataV is more efficient to implement a
given dashboard design.” Whether or not LADV is suitable
as an implementation tool remains a controversial topic. Most
participants agreed that the use of LADV in the early stage
as a prototyping tool for dashboard creation is efficient. The
results show that DataV can complement LADV. However, some
participants noted that displaying the right data is more important
than aesthetics, which LADV cannot cope with. For example, one
participant said, “The first thing I think about is not how the
dashboard will look better, but how the information should be
arranged. If possible, I hope the tool (LADV) can provide some
layout recommendations.”

7.4 Review in Real Scenarios

LADV has already been deployed in the Alibaba Cloud computing
environment and used in the actual design process of dashboard
projects by PMs and designers. Feedback indicates that LADV is
suitable for many usage scenarios. For example, one designer said,

“It (LADV) seems good when used for brainstorming.” Another
designer suggests to sketch on erasable and reusable drawing
medium, such as a white board. Figure 12 shows some designs that
have been tried and evaluated after automatic generation under the
real scenarios of Alibaba Cloud.

8 DISCUSSIONS

LADV reshapes the process of creating a visualization dashboard.
Rich designs with low workloads can be achieved by empowering
users with the ability to conceive dashboards.

8.1 Template-Based vs. Free-Form Images

We first attempted to build a dashboard template framework
that would provide appropriate dashboard designs on the basis
of user requirements. However, the use of dashboard templates
was eventually discarded because of two main problems. First,
the variety of charts and layouts makes it impossible to cover
all situations with a limited number of templates. Second, the
template-based mode typically limits the imagination. By contrast,
initialization from free-form images allows users in completing
their own design intention rather than providing direct results.

However, our approach has its disadvantages. In contrast to
template-based tools, LADV cannot guide users into trying different
types of charts because they tend to only use charts in the galleries
or those they are originally familiar with. A possible solution is to
recommend alternative chart types.

8.2 Limitations
8.2.1 Chart Recognition
In testing our approach, we find some common chart recognition
failure cases. Figure 13 shows some examples.

Most chart recognition failures of computer-generated images
occur when the input dashboard contains a chart that is excluded
from the training data. Figure 13(a)(d) show an example wherein a
treemap is excluded in our training data and has been recognized
as a basic heat map. Most of our training data come from the
DataV visualization database. Accordingly, the recognition model
does not perform as well in the infographics as in the regular
dashboard design. Specifically, the regular trained chart features
cannot cover these customized graphs. For example, LADV reached
a low recognition result with infographic examples from Data-
Driven [48] and InfoNice [49]. However, infographics mostly tend
to focus on individual cases or a narrative story with specified
graphs. By contrast, LADV is focused on expressing generalized
interest.

Most chart recognition failures of sketched images are caused
by irregular chart shapes, such as strokes that exceed the region of
a chart, large circles in the scatterplot (Figure 13(b)(e)) or a bar
chart with a small number of bars (Figure 13(c)(f)). Such mistakes
also occur when the input image contains a control panel or other
auxiliaries that are not charts (e.g., the top-right corner of the
dashboard in Figure 14). Users’ different drawing habits also cause
failures. Sketches are drawn with many amenities such as grid lines
of axes, often causing charts to be recognized as maps.

Another common problem comes from input images with
only one chart. A single chart does not conform to the learned
characteristics of dashboards. Such an issue can be easily eliminated
by making a judgment before recognition.

8.2.2 Sophisticated Designs
Although LADV can recognize different chart types, it cannot learn
from the design details, especially when the designer deliberately
violates the visual design guidelines to achieve a special expression.
For example, all line charts in Figure 14 share the same y-axis scale,
resulting in the remaining three ones having seemingly incorrect
aspect ratios. However, this design is to highlight the difference in
value. The designer also added axis grids to eliminate the blank area,
which may affect the overall aesthetics. Such sophisticated design
leads to the incorrect judgment of LADV on the area occupied by
the charts, resulting in a faulty blank area.

Nevertheless, as a preliminary attempt in this direction, the
results of LADV are sufficient for initial conceptualization. The
details can be later optimized by the rich customization options
provided.

8.2.3 Usability for Novices
The generated dashboards are heavily influenced by user-supplied
images. Although LADV can greatly alleviate the burden of
designing and implementing dashboards, novices still have troubles
in the beginning. Novices have neither accessibility to collect large
quantities of dashboard examples nor the ability to judge the ones
that are good. LADV provides dashboard collections for users to
explore and select their preferred dashboard styles to solve this
problem. LADV enables rapid prototyping for easy evaluation.
Thus, novices can quickly try out different dashboard designs and
find the one that they want most. Such rapid conceptualization
process can provide a good opportunity for novices to learn from.
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Fig. 12. Examples of dashboards learned and generated from sketches. (d–f) are generated from (a–c), respectively.
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Fig. 13. Failure cases. (a) Treemap excluded from the training data and
recognized as a similar chart (d). (b) A large circle in the scatterplot is
recognized as (e) a pie chart. (c) A bar chart with small number of bars
(<4) is recognized as (f) a line chart.

Fig. 14. LADV correctly recognizes the line charts but cannot understand
the sophisticated design on the y-axis scale.

8.3 Future Improvements
In addition to further optimizing the model, we also summarized
several potential improvements of LADV on the basis of the
feedback from the user studies.

Data exploration and binding. Designing a good dashboard
consists of three main aspects: understanding the data, design
decisions for proper presentation of the data, and visual and
aesthetical considerations. LADV is mainly for the second and
third aspects as it allows users to leverage existing layouts or do
thinking while sketching. The main advantage of LADV lies in its
intuitive pipeline with minimal learning costs. However, the goal
has not been fully achieved. At present, LADV fills the generated
dashboard with a default dataset and lacks the recommendation for
data dimensions and visual encodings. If LADV can recommend
reasonable dimension binding on the basis of user-specified datasets

and input exemplars, then it would be beneficial. This concept
can also support the faceted browsing of datasets to help users
efficiently discover data patterns. This idea is the main focus of our
future work.

Detail style extraction. LADV efficiently performs in color
extraction and layout optimization. However, detailed style extrac-
tion still requires improvement. For example, font is an important
element in dashboard design, but it is not currently supported;
only a default font is specified. Many participants of our user
study indicated that font and other detailed styles, such as grid
axis, legends, and text in the titles, are also worth learning from
exemplars. Many successful methods for such extraction have been
employed. We can easily integrate those methods into LADV to
enhance its usability.

9 CONCLUSIONS

In this work, we propose LADV, which is a deep learning-based
schema that applies chart inference to help users conceptualize their
design intention. To the best of our knowledge, this study is the
first attempt to automatically generate a visualization dashboard by
using only images and sketches. LADV can promote the creativity
of conceiving new dashboard designs. The results of our user
studies show that LADV is suitable for dashboard designing tasks
and can improve users’ creativity.
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